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NONLINEAR VIBRATIONS OF A VISCOELASTIC PLATE

WITH CONCENTRATED MASSES

UDC 539.1D. A. Khodzhaev1 and B. Kh. Éshmatov2

The problem of vibrations of a viscoelastic plate with concentrated masses is studied in a geometri-
cally nonlinear formulation. In the equation of motion of the plate, the action of the concentrated
masses is taken into account using Dirac δ-functions. The problem is reduced to solving a system
of Volterra type ordinary nonlinear integrodifferential equations using the Bubnov–Galerkin method.
The resulting system with a singular Koltunov–Rzhanitsyn kernel is solved using a numerical method
based on quadrature formulas. The effect of the viscoelastic properties of the plate material and the
location and amount of concentrated masses on the vibration amplitude and frequency characteristics
is studied. A comparison is made of numerical calculation results obtained using various theories.

Key words: viscoelastic plate, concentrated mass, nonlinear vibrations, Bubnov–Galerkin method,
relaxation kernel.

In mechanical engineering and the building and aviation industries, one often encounters problems of vi-
brations of plates and shells of composite materials with longitudinal and transverse ribs, cover strips or units of
devices. In theoretical studies of such problems, it is reasonable to treat these attached elements as added masses
rigidly connected to systems and concentrated at points. The effect of concentrated masses on the system has
an inertial nature [1]. The vibrations of elastic systems with concentrated masses have been studied in a number
of papers [1–6], in which problems have been solved in a linear formulation [1] or some properties of structural
materials [2–6] have been considered. At the same time, problems of nonlinear vibrations of elastic plates and shells
with concentrated masses have been studied insufficiently: there are only some papers devoted to this issue (see,
for example, [7]).

As is known, most composite materials possess distinct viscoelastic properties [8]. The practice of using new
materials possessing viscoelastic properties and an analysis of their dynamic behavior show that their strength is
greatly affected by heterogeneities of the type of attached masses.

Much less attention has been given to the behavior of inertially inhomogeneous viscoelastic systems [9]. The
problems have been considered using the differential Voigt model or the Boltzmann–Volterra integral model, in
which the relaxation kernels are exponential kernels which do not describe real processes in shells and plates at the
initial time [10].

A feature of the problem considered is that use of Bubnov–Galerkin method reduces the problem in both
linear and nonlinear formulations to solving irreducible systems of integrodifferential equations with singular kernels,
which are difficult to study. Therefore, in many papers, additional conditions are introduced for the coordinate
functions (see, for example, [3]).

The purpose of the present work is to study nonlinear vibrations of a viscoelastic plate with concentrated
masses.
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Fig. 1. Diagram of the plate with concentrated masses.

1. Mathematical Model. We consider a rectangular viscoelastic plate of thickness h with sides a and b,
made of a homogeneous isotropic material and with concentrated masses Mp at the points (xp, yp), p = 1, 2, . . . , I

(Fig. 1).
The relations between the stresses σx, σy, and τxy and the strains εx, εy, and γxy in the middle surface are

written in the form [8, 10]

σx =
E

1 − μ2
(1 − R∗)(εx + μεy), σy =

E

1 − μ2
(1 − R∗)(εy + μεx), τxy =

E

2(1 + μ)
(1 − R∗)γxy, (1)

where E is the elastic modulus, μ is Poisson’s ratio, and R∗ is the integral operator with the relaxation kernel R(t):

R∗ϕ =

t∫

0

R(t − τ)ϕ(τ) dτ.

The relationship between the strains εx, εy, and γxy in the middle surface and the displacements u, v, and w

in the x, y, and z directions is given by [11]

εx =
∂u

∂x
+

1
2

[(∂w

∂x

)2

−
(∂w0

∂x

)2]
, εy =

∂v

∂y
+

1
2

[(∂w

∂y

)2

−
(∂w0

∂y

)2]
,

γxy =
∂u

∂y
+

∂v

∂x
+

∂w

∂x

∂w

∂y
− ∂w0

∂x

∂w0

∂y
,

(2)

where w0 = w0(x, y) is the initial deflection.
The effect of the concentrated masses on the viscoelastic plate has an inertial nature and is taken into account

in the equation of motion by means of the Dirac δ-function [1]:

m(x, y) = ρh +
I∑

p=1

Mpδ(x − xp)δ(y − yp) (3)

(ρ is the density of the plate material).
Substituting (1) and (2) [in view of (3)] into the equations [11]

∂σx

∂x
+

∂τxy

∂y
= 0,

∂τxy

∂x
+

∂σy

∂y
= 0,

−D

h
(1 − R∗)∇4(w − w0) +

∂

∂x

(
σx

∂w

∂x
+ τxy

∂w

∂y

)
+

∂

∂y

(
τxy

∂w

∂x
+ σy

∂w

∂y

)

+
q

h
−

(
ρ +

1
h

I∑
p=1

Mpδ(x − xp)δ(y − yp)
)∂2w

∂t2
= 0,
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∂2εx

∂y2
+

∂2εy

∂x2
− ∂2γxy

∂x ∂y
= −1

2
[L(w, w) − L(w0, w0)]

and introducing the stress function F in the form [11]

σx =
∂2F

∂y2
, σy =

∂2F

∂x2
, τxy = − ∂2F

∂x∂y
,

we obtain the Kármań type equations

D

h
(1 − R∗)∇4(w − w0) +

(
ρ +

1
h

I∑
p=1

Mpδ(x − xp)δ(y − yp)
)∂2w

∂t2
= L(w, F ) +

q

h
,

1
E

∇4F = −1
2

(1 − R∗)[L(w, w) − L(w0, w0)],
(4)

where D = Eh3/[12(1 − μ2)] is the flexural rigidity of the plate and q is the external load;

L(w, w) = 2
[∂2w

∂x2

∂2w

∂y2
−

( ∂2w

∂x∂y

)2]
, L(w, F ) =

∂2w

∂x2

∂2F

∂y2
+

∂2F

∂x2

∂2w

∂y2
− 2

∂2w

∂x∂y

∂2F

∂x∂y
.

Thus, the mathematical model of the problem of vibrations of viscoelastic plates with concentrated masses
in a geometrically nonlinear formulation is described by the system of partial integrodifferential equations (4) with
the corresponding boundary and initial conditions.

Using the results of [12], it is possible to obtain mathematical models for the problem of nonlinear vibrations
of viscoelastic plates with concentrated masses:

D

h
(1 − R∗)∇4(w − w0) +

(
ρ +

1
h

I∑
p=1

Mpδ(x − xp)δ(y − yp)
)∂2w

∂t2

=
6D

h3ab
∇2w(1 − R∗)

{ a∫

0

b∫

0

[(∂w

∂x

)2

+
(∂w

∂y

)2

−
(∂w0

∂x

)2

−
(∂w0

∂y

)2]
dx dy

}
+

q

h
. (5)

2. Choice of a Relaxation Kernel. Studies have shown that the integral relations of the hereditary
viscoelasticity theory are equivalent to linear differential relations with constant coefficients if the kernel is the
sum of exponential functions. At the same time, processing of experimental data have shown that the kernels
containing one or several exponential terms are unsuitable for describing the properties of real materials; therefore,
it is necessary to use more complex dependences based on weakly singular functions. In this case, the following
circumstances should be taken into account. Results of studies of the creep and relaxation of viscoelastic materials
suggest that the relaxation processes have extremely high intensity in the initial stage of tests. In this case, the
rates of the processes are so high that their direct measurement at the initial time is impossible. Therefore, the
processes should be considered dynamic and their rates should be considered equal to infinity [10].

This phenomenon can be described using weakly singular functions which provide for finite strains and
stresses, in contrast to strongly singular functions, which yield infinitely large values. Weakly singular functions
provide an adequate description of relaxation rates if they contain a sufficient number of rheological parameters,
for example, the kernels proposed by Rabotnov, Rzhanitsyn, Koltunov, et al. [10].

In the following calculations, we will use the simple but fairly general weakly singular Koltunov–Rzhanitsyn
kernel with three rheological parameters (A, β, and α) [10]:

R(t) = A e−βt tα−1, 0 < α < 1. (6)

3. Algorithm for Numerical Solution of Nonlinear Problems of Dynamics of Viscoelastic
Systems with Concentrated Masses. The numerical method proposed in [13] is suitable for solving nonlinear
integrodifferential of the form

N∑
n=1

aknẅn + ω2
kwk = Xk

(
t, w1, . . . , wN ,

t∫

0

ϕk(t, τ, w1(τ), . . . , wN (τ)) dτ
)
,

wk(0) = w0k, ẇk(0) = ẇ0k, k = 1, 2, . . . , N,

(7)
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where wk = wk(t) are unknown functions of time, Xk and ϕk are continuous functions in the range of the arguments,
and akn and ωk are specified constants.

Many nonlinear dynamic problems of viscoelasticity [14–16], in particular, problems of the vibrations and
dynamic stability of viscoelastic structures with concentrated masses are reduced to systems (7).

System (7) can be written in matrix form

Aẅ + ω2w = X
(
t, w,

t∫

0

ϕ(t, τ, w(τ)) dτ
)
, w(0) = w0, ẇ(0) = ẇ0, (8)

where

A =

⎛
⎜⎜⎝

a11 a12 . . . a1N

a21 a22 . . . a2N

. . . . . . . . . . . .

aN1 aN2 . . . aNN

⎞
⎟⎟⎠ , w =

⎛
⎜⎜⎝

w1

w2

. . .

wN

⎞
⎟⎟⎠ , ω2 =

⎛
⎜⎜⎝

ω2
1 0 . . . 0
0 ω2

2 . . . 0
. . . . . . . . . . . .

0 0 . . . ω2
N

⎞
⎟⎟⎠ ,

X =

⎛
⎜⎜⎝

X1

X2

. . .

XN

⎞
⎟⎟⎠ , ϕ =

⎛
⎜⎜⎝

ϕ1

ϕ2

. . .

ϕN

⎞
⎟⎟⎠ .

Solving system (8) for w, for the unknowns at the points ti = ih (i = 0, 1, 2, . . .; h is the interpolation step),
we obtain the recursive formula

wi+1 = ẇ0ti+1 + w0 + A−1
i∑

j=0

Aj(ti+1 − tj)
[
− ω2wj + X

(
tj , wj ,

j∑
k=0

Bkϕ(tj , tk, wk)
)]

, (9)

where A−1 is the matrix which is the reciprocal of the matrix A and Aj and Bk (j = 0, 1, . . . , i; k = 0, 1, . . . , j) are
the nodes of the interpolation formula.

By using the Bubnov–Galerkin method, the corresponding problem in a two-dimensional formulation is
reduced to the nonlinear integrodifferential equations

N∑
n=1

M∑
m=1

aklnmẅnm + ω2
klwkl = Xkl

(
t, w11, . . . , wNM ,

t∫

0

ϕkl(t, τ, w11(τ), . . . , wNM (τ)) dτ
)
,

wkl(0) = w0kl, ẇkl(0) = ẇ0kl, k = 1, 2, . . . , N, l = 1, 2, . . . , M.

Introducing the matrices A, ω2, X , and ϕ in the problem considered, for the dependence w = w(t), we
obtain the matrix equation (8), whose solution is found from the recursive relation (9).

4. Test Example. Let us consider the system of nonlinear integrodifferential equations

ü + λ2
1u = px + λ2

t∫

0

R(t − τ)u(τ) dτ + λ3

t∫

0

R1(t − τ)v(τ) dτ + λ4

t∫

0

R2(t − τ)w2(τ) dτ,

v̈ + ϕ2
1v = py + ϕ2

t∫

0

R1(t − τ)v(τ) dτ + ϕ3

t∫

0

R(t − τ)u(τ) dτ + ϕ4

t∫

0

R2(t − τ)w2(τ) dτ,

ẅ + ω2
1w = q + ω2

t∫

0

R3(t − τ)w(τ) dτ + ω3w

t∫

0

R(t − τ)u(τ) dτ
(10)

+ ω4w

t∫

0

R1(t − τ)v(τ) dτ + ω5

t∫

0

R2(t − τ)w2(τ) dτ
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with the initial conditions u(0) = 1, u̇(0) = −β1, v(0) = 1, v̇(0) = −β2, w(0) = 1, and ẇ(0) = −β3,
where

R(t) = A e−β1t tα−1, R1(t) = A1 e−β2t tα1−1, R2(t) = A2 e−2β3t tα2−1,

R3(t) = A3 e−β3t tα3−1, 0 < α < 1, 0 < α1 < 1, 0 < α2 < 1, 0 < α3 < 1,

px =
(
β2

1 + λ2
1 −

λ2A

α
tα

)
e−β1t −λ3A1

α1
e−β2t tα1 − λ4A2

α2
e−2β3t tα2 ,

py =
(
β2

2 + ϕ2
1 −

ϕ2A1

α1
tα1

)
e−β2t −ϕ3A

α
e−β1t tα − ϕ4A2

α2
e−2β3t tα2 ,

q =
(
β2

3 + ω2
1 − ω2A3

α3
tα3

)
e−β3t −ω3A

α
e−(β1+β3)t tα − ω4A1

α1
e−(β2+β3)t tα1 − ω5A2

α2
e−2β3t tα2 .

System (10) has an exact solution u = e−β1t, v = e−β2t, w = e−β3t that satisfies the initial conditions. Doubly
integrating system (10) subject to the initial conditions, we find the approximate values un = u(tn), vn = v(tn),
and wn = w(tn) at the nodes tn = (n − 1)Δt, n = 1, 2, . . . [similar to formula (9)] from the relations

un = 1 − β1tn +
n−1∑
i=0

Bi(tn − ti)
[
px(ti) − λ2

1ui

+
i∑

k=0

(λ2A

α
Ck e−β1tk ui−k +

λ3A1

α1
C1k e−β2tk vi−k +

λ4A2

α2
C2k e−2β3tk w2

i−k

)]
,

vn = 1 − β2tn +
n−1∑
i=0

Bi(tn − ti)
[
py(ti) − ϕ2

1vi

+
i∑

k=0

(ϕ2A1

α1
C1k e−β2tk vi−k +

ϕ3A

α
Ck e−β1tk ui−k +

ϕ4A2

α2
C2k e−2β3tk w2

i−k

)]
,

(11)

wn = 1 − β3tn +
n−1∑
i=0

Bi(tn − ti)
[
q(ti) − ω2

1wi

+
i∑

k=0

(ω2A3

α3
C3k e−β3tk wi−k +

ω3A

α
wiCk e−β1tk ui−k

+
ω4A2

α2
wiC1k e−β2tk vi−k +

ω5A2

α2
C2k e−2β3tk w2

i−k

)]
,

where Bi, Ck, C1k, C2k, and C3k are the coefficients of the quadrature trapezoid formula, B0 = h/2, Bi = h

(i = 1, 2, . . . , n − 1), and

C0 = hα/2, Ci = hα[iα − (i − 1)α]/2, Ck = hα[(k + 1)α − (k − 1)α]/2,

Cl0 = hαl/2, Cli = hαl [iαl − (i − 1)αl ]/2, Clk = hαl [(k + 1)αl − (k − 1)αl ]/2,

k = 1, 2, . . . , n − 1, l = 1, 2, 3.

Table 1 gives the results of calculations using formulas (11) in the range t = 0–0.8 with a step Δt = 0.001.
The following initial data were used: λ = 1.1, λ1 = 1.2, λ2 = 1.3, λ3 = 1.4, λ4 = 1.5, ϕ = 1.2, ϕ1 = 1.3, ϕ2 = 1.4,
ϕ3 = 1.5, ϕ4 = 1.6, ω = 1.3, ω1 = 1.4, ω2 = 1.5, ω3 = 1.6, ω4 = 1.7, ω5 = 1.8, A = 0.01, A1 = 0.02, A2 = 0.03,
A3 = 0.04, β = 0.25, β1 = 0.26, β2 = 0.27, β3 = 0.28, α = 0.05, α1 = 0.06, α2 = 0.07, and α3 = 0.08.

909



TABLE 1

t
Solution

Δ
Exact Approximate

0 1.000000 1.000000 —
0.1 0.974335 0.974237 9.8 · 10−5

0.2 0.949329 0.948868 4.6 · 10−4

0.3 0.924964 0.923942 10−3

0.4 0.901225 0.899560 1.6 · 10−3

0.5 0.878095 0.875867 2.2 · 10−3

0.6 0.855559 0.853050 2.5 · 10−3

0.7 0.833601 0.831336 2.0 · 10−3

0.8 0.812207 0.810994 1.2 · 10−3

From Table 1 it follows that the error Δ of the calculations performed using the method described here coincides
with the error of the quadrature formulas used and has the same order of smallness for the interpolation step.

5. Calculation of Nonlinear Vibrations of the Viscoelastic Plate with Concentrated Masses.
Bubnov–Galerkin Method. Let the plate be simply-supported on all sides. The plate deflections w and w0 are
approximated by the function

w(x, y, t) =
N∑

n=1

M∑
m=1

wnm(t) sin
nπx

a
sin

mπy

b
, w0(x, y) =

N∑
n=1

M∑
m=1

w0nm sin
nπx

a
sin

mπy

b
. (12)

Substituting (12) into the second equation (4) and equating the coefficients of the identical harmonics of the
trigonometric functions on both sides of this equation, we find the force function

F (x, y, t) = E

N∑
i,j=1

M∑
r,s=1

(1 − R∗)(wirwjs − w0irw0js)
(
Cirjs cos

(i + j)πx

a
cos

(r + s)πy

b

+ Airjs cos
(i + j)πx

a
cos

(r − s)πy

b
+ Dirjs cos

(i − j)πx

a
cos

(r + s)πy

b
+ Birjs cos

(i − j)πx

a
cos

(r − s)πy

b

)
. (13)

Here

Cirjs = − λ2ir(ir − js)
4[(i + j)2 + λ2(r + s)2]2

, Airjs =
λ2ir(ir + js)

4[(i + j)2 + λ2(r − s)2]2
,

Dirjs =
λ2ir(ir + js)

4[(i − j)2 + λ2(r + s)2]2
, Birjs = − λ2ir(ir − js)

4[(i − j)2 + λ2(r − s)2]2
, λ =

a

b
.

Substituting (13) and (12) into the first equation (4) and implementing the procedure of the Bubnov–Galerkin
method using the properties of the Dirac function [1], we obtain the following system of nonlinear integrodifferential
equations for the unknowns wkl = wkl(t):

ρb4

Eh2π2
ẅkl +

4b3

π2ah3E

N∑
n=1

M∑
m=1

( I∑
p=1

Mp sin
kπxp

a
sin

nπxp

a
sin

lπyp

b
sin

mπyp

b

)
ẅnm

+
π2

12(1 − μ2)

[(k

λ

)2

+ l2
]2

(1 − R∗)(wkl − w0kl)

=
16αklhq

klπ4E

( b

h

)4

− 1
h2

N∑
n,i,j=1

M∑
m,r,s=1

aklnmirjswnm(1 − R∗)(wirwjs − w0irw0js),
(14)

wkl(0) = w0kl, ẇkl(0) = ẇ0kl, k = 1, 2, . . . , N, l = 1, 2, . . . , M.

Here αkl = 1 if k and l are odd and αkl = 0 if k or l even; the coefficient aklnmirjs is determined from [14, 15].

910



2 4 6 8
_3

_2

_1

0

1

2

3

0 t

w .103

1 2

3

4

2 4 6 8
_2

_1

0

1

2

3

4

0 t

w .103

1

2

3

Fig. 2 Fig. 3

Fig. 2. Deflection versus time for N = 1 (1), 3 (2), 7 (3), and 11 (4).

Fig. 3. Deflection versus time for A = 0 (1), 0.05 (2), and 0.1 (3).

Introducing the dimensionless quantity xp/a, yp/b, Mp/M0, wkl/h, w0kl/h, (q/E)(b/h)4, ωt, and R(t)/ω in
(14) and retaining the former notation, we obtain

N∑
n=1

M∑
m=1

Bklnmẅnm +
1
4

[(k

λ

)2

+ l2
]2

(1 − R∗)(wkl − w0kl)

=
48αkl(1 − μ2)

klπ6
q − 3(1 − μ2)

π2

N∑
n,i,j=1

M∑
m,r,s=1

aklnmirjswnm(1 − R∗)(wirwjs − w0irw0js), (15)

wkl(0) = w0kl, ẇkl(0) = ẇ0kl, k = 1, 2, . . . , N, l = 1, 2, . . . , M,

where ω =
√

(4D/ρh)(π/b)4 is the fundamental vibration frequency, M0 = abρh is the mass of the plate,

and Bklnm = 4
I∑

p=1

Mp sin kπxp sin nπxp sin lπyp sinmπyp for k �= n, l �= m; otherwise, Bklkl = 1 +

4
I∑

p=1

Mp sin2 kπxp sin2 lπyp.

System (15) was integrated using the numerical algorithm based on quadrature formulas which was described
in Sec. 3. In the calculations, as the relaxation kernels we used the weakly singular Koltunov–Rzhanitsyn kernels
(6). The calculations were performed in the Delphi algorithmic language.

Below, we give the results of calculations for various physical and geometrical parameters of the viscoelastic
plate (Figs. 2–7). Unless otherwise indicated, the following initial parameter values were used: w0 = 10−3, A = 0.05,
β = 0.01, α = 0.25, q = 0, and λ = 1.

The convergence of the Bubnov–Galerkin method (Fig. 2) was studied. In the calculation of the deflection,
the first seven harmonics were retained (N = 7 and M = 1). The calculations showed that a further increase in the
number of terms did not have a significant effect on the vibration amplitude of the viscoelastic plate.

Figure 3 shows time dependences of the deflection at the center of an elastic plate (curve 1) and a viscoelastic
plate (curves 2 and 3). It is evident that accounting for the viscoelastic properties of the plate material leads to the
attenuation of the vibration process. In the initial period, the solution of the elastic and viscoelastic problems differ
only slightly, but with time, the viscoelastic properties begin to have a significant effect. Studies have shown that
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Fig. 4. Deflection versus time for M1 = 0.1: curve 1 refers to an elastic plate material and curves 2
and 3 refer to a viscoelastic material (curve 2 refers to the exponential relaxation kernel and curve
3 to the weakly singular Koltunov–Rzhanitsyn kernel).

Fig. 5. Deflection versus time for M1 = 0 (1), 0.1 (2), and 0.2 (3).

an increase in the rheological parameter A and a decrease in the parameter α lead to a decrease in the vibration
frequency and, hence, the amplitude.

The further calculations showed that variation in the third rheological viscosity parameter β (0 < β < 1)
did not have a significant effect on the vibrations of the viscoelastic plate, which also confirms that the exponential
relaxation kernels are unsuitable for calculations of the dynamic problems of viscoelastic systems.

Figure 4 shows the results of calculations of the strain of a square plate with a mass M1 = 0.1 concentrated
at the center in the absence of a transverse load (q = 0). It is evident that at the initial time, the results obtained
using these kernels almost coincide; however, with time, their difference increases, and at t = 10, it is not larger
than 30%. At the same time, the amplitudes obtained for the viscoelastic problem using the exponential relaxation
kernel differ insignificantly from those obtained in the elastic formulation not only for the initial times but also over
a fairly large time interval.

The effect of the mass concentrated at the center of the plate on the vibration process is shown in Fig. 5. It
is evident that an increase in the concentrated mass leads to a decrease in the vibration amplitude and frequency. It
should be noted that in the particular case where there is no concentrated mass at the center of the plate (M1 = 0),
the results coincide with the data given in [17].

The effect of the location of the concentrated mass on the vibration process (Fig. 6) was also studied. It
was established that with distance of the concentrated mass from the center of the plate, the vibration frequency
increased.

Figure 7 shows the results of calculations using various theories for a square plate with a mass M1 = 0.1
concentrated at the center. In the absence of initial irregularities and external loads, the calculation results obtained
using these theories coincide. However, in the presence of external loads and with increasing values of the initial
irregularities, the dependences w(t) obtained using the Kirchhoff–Love and Berger theories differ even at the initial
times. Nevertheless, even under these conditions, the results obtained using the linear theory coincide for a fairly
long time with those obtained using the Berger theory (the calculations for the Berger theory were performed for
Eq. 5).

Conclusions. The above analysis of the results of studies of nonlinear dynamic problems of vibrations of
viscoelastic plates with concentrated masses leads to the following conclusions.
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Fig. 6. Deflection versus time for M1 = 0.1, y1 = 1/2, and x1 = 1/2 (1), 1/3 (2), and 1/6 (3).

Fig. 7. Deflection versus time for w0 = 0.5, q = 1, M1 = 0.1, and x1 = y1 = 1/2: 1) linear theory;
2) Berger theory; 3) Kirchhoff–Love hypothesis.

The numerical results obtained using the exponential kernel as the relaxation kernel almost coincide with
the results obtained in the elastic formulation. Therefore, as relaxation kernels one needs to use the Koltunov–
Rzhanitsyn kernels, which contain a sufficient number of rheological parameters to obtain realistic numerical results
for viscoelastic structures in good agreement with experimental data [10].

An increase in the concentrated mass leads to a more rapid decrease in the vibration amplitude and frequency.
In both the elastic and viscoelastic cases, the vibration frequency increases with distance of the concentrated

mass from the center of the plate.
Depending on the values of the geometrical and physical parameters of plates, the corresponding theory

(linear, Berger, or Kirchhoff–Love theory) should be used in the calculations. For vibrations of a square plate in
the absence of external loads and initial irregularities, the results obtained using the indicated theories coincide.
However, in the case of accounting for the initial irregularities of the plate and in the presence of external loads,
a difference between the results obtained using these theories arises even at the initial times. For the present
formulation of the problem, the classical Kirchhoff–Love theory is the most suitable.
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